Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion
نویسندگان
چکیده
This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.
منابع مشابه
Performance Evaluation of Detector Algorithms of Dust Storms in Arid Lands (Case Study: Yazd Province)
Introduction: In recent years, frequency and intensity of dust storms have been increased because of human destructive activities and caused significant loss in different aspects of hygienic and health, environmental and socio-economic sections. Therefore, detection and trace of dust storms in shortest time is the first effective step in preparation and implementation of strategic and operation...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملDust Storms Detection and Its Impacts on the Growth and Reproductive Traits of Grape vine (Vitis vinifera) in Malayer Plain
Introduction: Dust storm is one of the air pollutants in desert areas that have damaging effects on environmental ecosystems. This phenomenon usually happens when severe winds occur in arid areas which are accompanied by the ascent of dust particles to the upper layers of the atmosphere. HYSPLIT model can assist in detecting the path of dust entering the stations. In addition, synoptic patterns...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IPSJ Trans. Computer Vision and Applications
دوره 7 شماره
صفحات -
تاریخ انتشار 2015